Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.974
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1354733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721147

RESUMO

Background: In 2020, 38% of adults were affected by obesity, while infertility globally affected 1 in 6 people at some stage of their lives.Body mass index (BMI) provides an easy but occasionally inaccurate estimation of body composition. To achieve a more precise assessment, bioelectric impedance analysis serves as a validated tool that administers electrical energy through surface electrodes. Phase angle as a function of the relationship between tissues resistance and reactance, is a trustworthy predictor of body composition and cell membrane integrity. Objectives: We aim to assess whether there is an association between phase angle and seminal parameters, as well as sperm DNA fragmentation percentage. Design: Semen samples of 520 idiopathic infertile patients were analyzed according to 2021 World Health Organization guidelines and evaluated for sperm DNA fragmentation rate. Each participants underwent bioelectric impedance analysis. Results: Median age was 40 years old, median BMI was 26.3 kg/m2, median phase angle was 6.2°. In the logistic regression analysis adjusted for age and total intracorporeal water, phase angle (continuous) was significantly associated with oligozoospermia (odds ratio [OR]:0.4; p<0.01) and sperm morphology (OR: 0.65; p=0.05) and slightly with sperm DNA fragmentation (OR: 0.98; p=0.07). In subgroup analysis, the logistic regression analysis adjusted for the mentioned parameters showed that a phase angle between 6.2 and 7 (°) (OR: 0.63; p=0.02) and >7 (°) (OR: 0.12; p<0.01) were associated with a reduced risk of oligozoospermia compared to values <6.2 (°). Similarly, a phase angle between 6.2 and 7 (°) (OR: 0.57; p< 0.01 and OR: 0.58; p= 0.01) and PA > 7 (°) (OR: 0.12; p= 0.03 and OR: 0.21; p< 0.01) were associated with a reduced risk of lower sperm concentration and lower total sperm count, respectively, compared to a phase angle < 6.2 (°). Conclusion: Our study suggests a negative association between phase angle and detrimental sperm parameters in male idiopathic infertility.


Assuntos
Fragmentação do DNA , Impedância Elétrica , Infertilidade Masculina , Análise do Sêmen , Espermatozoides , Humanos , Masculino , Adulto , Infertilidade Masculina/patologia , Infertilidade Masculina/diagnóstico , Espermatozoides/patologia , Análise do Sêmen/métodos , Índice de Massa Corporal , Composição Corporal , Pessoa de Meia-Idade , Contagem de Espermatozoides , Motilidade dos Espermatozoides
2.
Cell Mol Life Sci ; 81(1): 212, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724675

RESUMO

Leydig cells are essential components of testicular interstitial tissue and serve as a primary source of androgen in males. A functional deficiency in Leydig cells often causes severe reproductive disorders; however, the transcriptional programs underlying the fate decisions and steroidogenesis of these cells have not been fully defined. In this study, we report that the homeodomain transcription factor PBX1 is a master regulator of Leydig cell differentiation and testosterone production in mice. PBX1 was highly expressed in Leydig cells and peritubular myoid cells in the adult testis. Conditional deletion of Pbx1 in Leydig cells caused spermatogenic defects and complete sterility. Histological examinations revealed that Pbx1 deletion impaired testicular structure and led to disorganization of the seminiferous tubules. Single-cell RNA-seq analysis revealed that loss of Pbx1 function affected the fate decisions of progenitor Leydig cells and altered the transcription of genes associated with testosterone synthesis in the adult testis. Pbx1 directly regulates the transcription of genes that play important roles in steroidogenesis (Prlr, Nr2f2 and Nedd4). Further analysis demonstrated that deletion of Pbx1 leads to a significant decrease in testosterone levels, accompanied by increases in pregnenolone, androstenedione and luteinizing hormone. Collectively, our data revealed that PBX1 is indispensable for maintaining Leydig cell function. These findings provide insights into testicular dysgenesis and the regulation of hormone secretion in Leydig cells.


Assuntos
Infertilidade Masculina , Células Intersticiais do Testículo , Fator de Transcrição 1 de Leucemia de Células Pré-B , Testículo , Testosterona , Animais , Masculino , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Camundongos , Testosterona/metabolismo , Testículo/metabolismo , Testículo/patologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Infertilidade Masculina/metabolismo , Diferenciação Celular/genética , Espermatogênese/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Genes (Basel) ; 15(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38674398

RESUMO

Human sperm parameters serve as a first step in diagnosing male infertility, but not in determining the potential for successful pregnancy during assisted reproductive technologies (ARTs) procedures. Here, we investigated the relationship between sperm head morphology at high magnification, based on strict morphologic criteria, and the nuclear architecture analyzed by fluorescence in situ hybridization (FISH). We included five men. Two of them had an elevated high-magnification morphology score of 6 points (Score 6) indicating high fertility potential, whereas three had a low score of 0 points (Score 0), indicating low fertility potential. We used FISH to study the inter-telomeric distance and the chromosomal territory area of chromosome 1 (Chr. 1). We then compared these two parameters between subjects with high and low scores. FISH data analysis showed that the inter-telomeric distance (ITD) and chromosomal territory area (CTA) of Chr. 1 were significantly higher in subjects with low scores (score 0) than high scores (score 6). Our results suggest that (i) there is a link between nuclear architecture and sperm head abnormalities, particularly vacuoles; and (ii) it is possible to select spermatozoa with normal nuclear architecture, which might indirectly explain the positive ART outcomes observed with this technique.


Assuntos
Núcleo Celular , Hibridização in Situ Fluorescente , Espermatozoides , Humanos , Masculino , Hibridização in Situ Fluorescente/métodos , Núcleo Celular/genética , Adulto , Cabeça do Espermatozoide , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Cromossomos Humanos Par 1/genética
4.
EMBO Rep ; 25(4): 2045-2070, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454159

RESUMO

Teratozoospermia is a significant cause of male infertility, but the pathogenic mechanism of acephalic spermatozoa syndrome (ASS), one of the most severe teratozoospermia, remains elusive. We previously reported Spermatogenesis Associated 6 (SPATA6) as the component of the sperm head-tail coupling apparatus (HTCA) required for normal assembly of the sperm head-tail conjunction, but the underlying molecular mechanism has not been explored. Here, we find that the co-chaperone protein BAG5, expressed in step 9-16 spermatids, is essential for sperm HTCA assembly. BAG5-deficient male mice show abnormal assembly of HTCA, leading to ASS and male infertility, phenocopying SPATA6-deficient mice. In vivo and in vitro experiments demonstrate that SPATA6, cargo transport-related myosin proteins (MYO5A and MYL6) and dynein proteins (DYNLT1, DCTN1, and DNAL1) are misfolded upon BAG5 depletion. Mechanistically, we find that BAG5 forms a complex with HSPA8 and promotes the folding of SPATA6 by enhancing HSPA8's affinity for substrate proteins. Collectively, our findings reveal a novel protein-regulated network in sperm formation in which BAG5 governs the assembly of the HTCA by activating the protein-folding function of HSPA8.


Assuntos
Proteínas do Citoesqueleto , Infertilidade Masculina , Teratozoospermia , Tiazóis , Humanos , Masculino , Animais , Camundongos , Teratozoospermia/metabolismo , Teratozoospermia/patologia , Sêmen/metabolismo , Espermatozoides/metabolismo , Cabeça do Espermatozoide/fisiologia , Espermatogênese/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Dineínas/metabolismo , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
5.
J Assist Reprod Genet ; 41(4): 1111-1124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403804

RESUMO

PURPOSE: To identify germline mutations related to azoospermia etiology and reproductive potential of surgically retrieved spermatozoa, and to investigate the feasibility of predicting seminiferous tubule function of nonobstructive azoospermic men by transcriptomic profiling of ejaculates. MATERIALS AND METHODS: Sperm specimens were obtained from 30 men (38.4 ± 6 years) undergoing epididymal sperm aspiration for obstructive azoospermia (OA, n = 19) acquired by vasectomy, or testicular biopsy for nonobstructive azoospermia (NOA, n = 11). To evaluate for a correlation with azoospermia etiology, DNAseq was performed on surgically retrieved spermatozoa, and cell-free RNAseq on seminal fluid (n = 23) was performed to predict spermatogenesis in the seminiferous tubule. RESULTS: Overall, surgically retrieved sperm aneuploidy rates were 1.7% and 1.8% among OA and NOA cohorts, respectively. OA men carried housekeeping-related gene mutations, while NOA men displayed mutations on genes involved in crucial spermiogenic functions (AP1S2, AP1G2, APOE). We categorized couples within each cohort according to ICSI clinical outcomes to investigate genetic causes that may affect reproductive potential. All OA-fertile men (n = 9) carried mutations in ZNF749 (sperm production), whereas OA-infertile men (n = 10) harbored mutations in PRB1, which is essential for DNA replication. NOA-fertile men (n = 8) carried mutations in MPIG6B (stem cell lineage differentiation), whereas NOA-infertile individuals (n = 3) harbored mutations in genes involved in spermato/spermio-genesis (ADAM29, SPATA31E1, MAK, POLG, IFT43, ATG9B) and early embryonic development (MBD5, CCAR1, PMEPA1, POLK, REC8, REPIN1, MAPRE3, ARL4C). Transcriptomic assessment of cell-free RNAs in seminal fluid from NOA men allowed the prediction of residual spermatogenic foci. CONCLUSIONS: Sperm genome profiling provides invaluable information on azoospermia etiology and identifies gene-related mechanistic links to reproductive performance. Moreover, RNAseq assessment of seminal fluid from NOA men can help predict sperm retrieval during testicular biopsies.


Assuntos
Azoospermia , Recuperação Espermática , Espermatogênese , Espermatozoides , Humanos , Masculino , Azoospermia/genética , Azoospermia/patologia , Adulto , Espermatozoides/patologia , Espermatogênese/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Testículo/patologia , Mutação/genética , Pessoa de Meia-Idade , Perfil Genético
6.
Hum Reprod ; 39(5): 892-901, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38365879

RESUMO

STUDY QUESTION: Are there subgroups among patients with cryptozoospermia pointing to distinct etiologies? SUMMARY ANSWER: We reveal two distinct subgroups of cryptozoospermic (Crypto) patients based on testicular tissue composition, testicular volume, and FSH levels. WHAT IS KNOWN ALREADY: Cryptozoospermic patients present with a sperm concentration below 0.1 million/ml. While the etiology of the severely impaired spermatogenesis remains largely unknown, alterations of the spermatogonial compartment have been reported including a reduction of the reserve stem cells in these patients. STUDY DESIGN, SIZE, DURATION: To assess whether there are distinct subgroups among cryptozoospermic patients, we applied the statistical method of cluster analysis. For this, we retrospectively selected 132 cryptozoospermic patients from a clinical database who underwent a testicular biopsy in the frame of fertility treatment at a university hospital. As controls (Control), we selected 160 patients with obstructive azoospermia and full spermatogenesis. All 292 patients underwent routine evaluation for endocrine, semen, and histological parameters (i.e. the percentage of tubules with elongated spermatids). Moreover, outcome of medically assisted reproduction (MAR) was assessed for cryptozoospermic (n = 73) and Control patients (n = 87), respectively. For in-depth immunohistochemical and histomorphometrical analyses, representative tissue samples from cryptozoospermic (n = 27) and Control patients (n = 12) were selected based on cluster analysis results and histological parameters. PARTICIPANTS/MATERIALS, SETTING, METHODS: This study included two parts: firstly using clinical parameters of the entire cohort of 292 patients, we performed principal component analysis (PCA) followed by hierarchical clustering on principal components (i.e. considering hormonal values, ejaculate parameters, and histological information). Secondly, for histological analyses seminiferous tubules were categorized according to the most advanced germ cell type present in sections stained with Periodic acid Schif. On the selected cohort of 39 patients (12 Control, 27 cryptozoospermic), we performed immunohistochemistry for spermatogonial markers melanoma-associated antigen 4 (MAGEA4) and piwi like RNA-mediated gene silencing 4 (PIWIL4) followed by quantitative analyses. Moreover, the morphologically defined Adark spermatogonia, which are considered to be the reserve stem cells, were quantified. MAIN RESULTS AND THE ROLE OF CHANCE: The PCA and hierarchical clustering revealed three different clusters, one of them containing all Control samples. The main factors driving the sorting of patients to the clusters were the percentage of tubules with elongated spermatids (Cluster 1, all Control patients and two cryptozoospermic patients), the percentage of tubules with spermatocytes (Cluster 2, cryptozoospermic patients), and tubules showing a Sertoli cells only phenotype (Cluster 3, cryptozoospermic patients). Importantly, the percentage of tubules containing elongated spermatids was comparable between Clusters 2 and 3. Additional differences were higher FSH levels (P < 0.001) and lower testicular volumes (P < 0.001) in Cluster 3 compared to Cluster 2. In the spermatogonial compartment of both cryptozoospermic Clusters, we found lower numbers of MAGEA4+ and Adark spermatogonia but higher proportions of PIWIL4+ spermatogonia, which were significantly correlated with a lower percentage of tubules containing elongated spermatids. In line with this common alteration, the outcome of MAR was comparable between Controls as well as both cryptozoospermic Clusters. LIMITATIONS, REASONS FOR CAUTION: While we have uncovered the existence of subgroups within the cohort of cryptozoospermic patients, comprehensive genetic analyses remain to be performed to unravel potentially distinct etiologies. WIDER IMPLICATIONS OF THE FINDINGS: The novel insight that cryptozoospermic patients can be divided into two subgroups will facilitate the strategic search for underlying genetic etiologies. Moreover, the shared alterations of the spermatogonial stem cell compartment between the two cryptozoospermic subgroups could represent a general response mechanism to the reduced output of sperm, which may be associated with a progressive phenotype. This study therefore offers novel approaches towards the understanding of the etiology underlying the reduced sperm formation in cryptozoospermic patients. STUDY FUNDING/COMPETING INTEREST(S): German research foundation CRU 326 (grants to: SDP, NN). Moreover, we thank the Faculty of Medicine of the University of Münster for the financial support of Lena Charlotte Schülke through the MedK-program. We acknowledge support from the Open Access Publication Fund of the University of Münster. The authors have no potential conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Hormônio Foliculoestimulante , Espermatogênese , Testículo , Humanos , Masculino , Adulto , Estudos Retrospectivos , Testículo/patologia , Hormônio Foliculoestimulante/sangue , Azoospermia/patologia , Contagem de Espermatozoides , Espermatozoides/patologia , Análise por Conglomerados , Oligospermia/patologia , Infertilidade Masculina/patologia , Infertilidade Masculina/etiologia
7.
Front Biosci (Landmark Ed) ; 29(1): 23, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38287801

RESUMO

Male infertility, age-related changes, and tumors have been increasingly studied in the field of male reproductive health due to the emergence of environmental stressors, declining fertility rates, and aging populations. Numerous studies have demonstrated that the ERK1/2 signaling pathway plays a significant role in male reproduction. The ERK1/2 pathway is associated with several signaling pathways and has a complex interplay that influences the spermatogenic microenvironment, sperm viability, gonadal axis regulation, as well as resistance to testicular aging and tumors. Moreover, the ERK1/2 pathway directly or indirectly regulates testicular somatic cells, which are crucial for maintaining spermatogenesis and microenvironment regulation. Given the critical role of the ERK1/2 signaling pathway in male reproductive health, comprehensive exploration of its multifaceted effects on male reproduction and underlying mechanisms is necessary. This study aims to provide a solid foundation for in-depth research in the field of male reproduction and further enhance the reproductive health of males.


Assuntos
Infertilidade Masculina , Neoplasias , Masculino , Humanos , Fertilidade/fisiologia , Sistema de Sinalização das MAP Quinases , Sêmen/metabolismo , Reprodução , Testículo/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Transdução de Sinais , Neoplasias/metabolismo , Microambiente Tumoral
8.
Nat Rev Urol ; 21(2): 91-101, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37723288

RESUMO

An increasing number of genes are being described in the context of non-syndromic male infertility. Linking the underlying genetic causes of non-syndromic male infertility with clinical data from patients is important to establish new genotype-phenotype correlations. This process can be facilitated by using universal nomenclature, but no standardized vocabulary is available in the field of non-syndromic male infertility. The International Male Infertility Genomics Consortium aimed at filling this gap, providing a standardized vocabulary containing nomenclature based on the Human Phenotype Ontology (HPO). The "HPO tree" was substantially revised compared with the previous version and is based on the clinical work-up of infertile men, including physical examination and hormonal assessment. Some causes of male infertility can already be suspected based on the patient's clinical history, whereas in other instances, a testicular biopsy is needed for diagnosis. We assembled 49 HPO terms that are linked in a logical hierarchy and showed examples of morphological features of spermatozoa and testicular histology of infertile men with identified genetic diagnoses to describe the phenotypes. This work will help to record patients' phenotypes systematically and facilitate communication between geneticists and andrologists. Collaboration across institutions will improve the identification of patients with the same phenotypes, which will promote the discovery of novel genetic causes for non-syndromic male infertility.


Assuntos
Infertilidade Masculina , Humanos , Masculino , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Espermatozoides/patologia , Testículo/patologia , Fenótipo , Genômica
9.
Andrology ; 12(3): 487-504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37674303

RESUMO

Testing for AZoospermia Factor (AZF) deletions of the Y chromosome is a key component of the diagnostic workup of azoospermic and severely oligozoospermic men. This revision of the 2013 European Academy of Andrology (EAA) and EMQN CIC (previously known as the European Molecular Genetics Quality Network) laboratory guidelines summarizes recent clinically relevant advances and provides an update on the results of the external quality assessment program jointly offered by both organizations. A basic multiplex PCR reaction followed by a deletion extension analysis remains the gold-standard methodology to detect and correctly interpret AZF deletions. Recent data have led to an update of the sY84 reverse primer sequence, as well as to a refinement of what were previously considered as interchangeable border markers for AZFa and AZFb deletion breakpoints. More specifically, sY83 and sY143 are no longer recommended for the deletion extension analysis, leaving sY1064 and sY1192, respectively, as first-choice markers. Despite the transition, currently underway in several countries, toward a diagnosis based on certified kits, it should be noted that many of these commercial products are not recommended due to an unnecessarily high number of tested markers, and none of those currently available are, to the best of our knowledge, in accordance with the new first-choice markers for the deletion extension analysis. The gr/gr partial AZFc deletion remains a population-specific risk factor for impaired sperm production and a predisposing factor for testicular germ cell tumors. Testing for this deletion type is, as before, left at the discretion of the diagnostic labs and referring clinicians. Annual participation in an external quality control program is strongly encouraged, as the 22-year experience of the EMQN/EAA scheme clearly demonstrates a steep decline in diagnostic errors and an improvement in reporting practice.


Assuntos
Andrologia , Azoospermia , Infertilidade Masculina , Oligospermia , Síndrome de Células de Sertoli , Aberrações dos Cromossomos Sexuais , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual , Humanos , Masculino , Sêmen , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Azoospermia/diagnóstico , Azoospermia/genética , Azoospermia/patologia , Deleção Cromossômica , Oligospermia/diagnóstico , Oligospermia/genética , Cromossomos Humanos Y/genética , Reação em Cadeia da Polimerase Multiplex , Síndrome de Células de Sertoli/genética
10.
J Assist Reprod Genet ; 41(1): 109-120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37831349

RESUMO

PURPOSE: Asthenozoospermia is an important cause of male infertility, and the most serious type is characterized by multiple morphological abnormalities of the sperm flagella (MMAF). However, the precise etiology of MMAF remains unknown. In the current study, we recruited a consanguineous Pakistani family with two infertile brothers suffering from primary infertility due to MMAF without obvious signs of PCD. METHODS: We performed whole-exome sequencing on DNAs of the patients, their parents, and a fertile brother and identified the homozygous missense variant (c.1490C > G (p.P497R) in NPHP4 as the candidate mutation for male infertility in this family. RESULTS: Sanger sequencing confirmed that this mutation recessively co-segregated with the MMAF in this family. In silico analysis revealed that the mutation site is conserved across different species, and the identified mutation also causes abnormalities in the structure and hydrophobic interactions of the NPHP4 protein. Different bioinformatics tools predict that NPHP4p.P497R mutation is pathogenic. Furthermore, Papanicolaou staining and scanning electron microscopy of sperm revealed that affected individuals displayed typical MMAF phenotype with a high percentage of coiled, bent, short, absent, and/or irregular flagella. Transmission electron microscopy images of the patient's spermatozoa revealed significant anomalies in the sperm flagella with the absence of a central pair of microtubules (9 + 0) in every section scored. CONCLUSIONS: Taken together, these results show that the homozygous missense mutation in NPHP4 is associated with MMAF.


Assuntos
Infertilidade Masculina , Irmãos , Humanos , Masculino , Flagelos/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Mutação , Mutação de Sentido Incorreto/genética , Proteínas/genética , Sêmen , Cauda do Espermatozoide/patologia , Espermatozoides/patologia
11.
Clin Genet ; 105(4): 440-445, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38148155

RESUMO

Nonobstructive azoospermia (NOA), the most severe manifestation of male infertility, lacks a comprehensive understanding of its genetic etiology. Here, a bi-allelic loss-of-function variant in REC114 (c.568C > T: p.Gln190*) were identified through whole exome sequencing (WES) in a Chinese NOA patient. Testicular histopathological analysis and meiotic chromosomal spread analysis were conducted to assess the stage of spermatogenesis arrested. Co-immunoprecipitation (Co-IP) and Western blot (WB) were used to investigate the influence of variant in vitro. In addition, our results revealed that the variant resulted in truncated REC114 protein and impaired interaction with MEI4, which was essential for meiotic DNA double-strand break (DSB) formation. As far as we know, this study presents the first report that identifies REC114 as the causative gene for male infertility. Furthermore, our study demonstrated indispensability of the REC114-MEI4 complex in maintaining DSB homoeostasis, and highlighted that the disruption of the complex due to the REC114 variant may underline the mechanism of NOA.


Assuntos
Azoospermia , Infertilidade Masculina , Humanos , Masculino , Azoospermia/genética , Azoospermia/patologia , Perda de Heterozigosidade , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Testículo/patologia , Meiose/genética , Proteínas de Ciclo Celular/genética
12.
Sci Rep ; 13(1): 18435, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891374

RESUMO

Spermatogenesis is a complex process related to male infertility. Till now, the critical genes and specific mechanisms have not been elucidated clearly. Our objective was to determine the hub genes that play a crucial role in spermatogenesis by analyzing the differentially expressed genes (DEGs) present in non-obstructive azoospermia (NOA) compared to OA and normal samples using bioinformatics analysis. Four datasets, namely GSE45885, GSE45887, GSE9210 and GSE145467 were used. Functional enrichment analyses were performed on the DEGs. Hub genes were identified based on protein-protein interactions between DEGs. The expression of the hub genes was further examined in the testicular germ cell tumors from the TCGA by the GEPIA and validated by qRT-PCR in the testes of lipopolysaccharide-induced acute orchitis mice with impaired spermatogenesis. A total of 203 DEGs including 34 up-regulated and 169 down-regulated were identified. Functional enrichment analysis showed DEGs were mainly involved in microtubule motility, the process of cell growth and protein transport. PRM2, TEKT2, FSCN3, UBQLN3, SPATS1 and GTSF1L were identified and validated as hub genes for spermatogenesis. Three of them (PRM2, FSCN3 and TEKT2) were significantly down-regulated in the testicular germ cell tumors and their methylation levels were associated with the pathogenesis. In summary, the hub genes identified may be related to spermatogenesis and may act as potential therapeutic targets for NOA and testicular germ cell tumors.


Assuntos
Infertilidade Masculina , Neoplasias Embrionárias de Células Germinativas , Humanos , Masculino , Animais , Camundongos , Perfilação da Expressão Gênica , Espermatogênese/genética , Testículo/metabolismo , Infertilidade Masculina/patologia , Biologia Computacional , Neoplasias Embrionárias de Células Germinativas/patologia
13.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843278

RESUMO

Maturation arrest (MA) is a subtype of non-obstructive azoospermia, and male infertility is a known risk factor for testicular tumors. However, the genetic basis for many affected individuals remains unknown. Here, we identified a deleterious hemizygous variant of X-linked retinoblastoma-binding protein 7 (RBBP7) as a potential key cause of MA, which was also found to be associated with the development of Leydig cell tumors. This mutation resulted in premature protein translation termination, affecting the sixth WD40 domain of the RBBP7 and the interaction of the mutated RBBP7 with histone H4. Decreased BRCA1 and increased γH2AX were observed in the proband. In mouse spermatogonial and pachytene spermatocyte-derived cells, deprivation of rbbp7 led to cell cycle arrest and apoptosis. In Drosophila, knockdown of RBBP7/Caf1-55 in germ cells resulted in complete absence of germ cells and reduced testis size, whereas knockdown of RBBP7/Caf1-55 in cyst cells resulted in hyperproliferative testicular cells. Interestingly, male infertility caused by Caf1-55 deficiency was rescued by ectopic expression of wild-type human RBBP7 but not mutant variants, suggesting the importance of RBBP7 in spermatogenesis. Our study provides insights into the mechanisms underlying the co-occurrence of MA and testicular tumors and may pave the way for innovative genetic diagnostics of these 2 diseases.


Assuntos
Azoospermia , Infertilidade Masculina , Neoplasias Testiculares , Animais , Humanos , Masculino , Camundongos , Azoospermia/genética , Azoospermia/metabolismo , Azoospermia/patologia , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Mutação , Proteína 7 de Ligação ao Retinoblastoma/genética , Proteína 7 de Ligação ao Retinoblastoma/metabolismo , Espermatogênese/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Testículo/metabolismo
14.
Reprod Fertil Dev ; 35(11): 589-600, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37393946

RESUMO

CONTEXT: The Pxt1 gene encodes a male germ cell-specific protein and its overexpression results in male germ cell degeneration and male infertility in transgenic mice. AIMS: The analysis of the function of Pxt1 during mouse spermatogenesis. METHODS: The phenotype of Pxt1 knockout mice was characterised by testicular histology, assessment of semen parameters including sperm motility, and DNA fragmentation by flow cytometry. Gene expression was analysed using RT-PCR. Fertility of mutants was checked by standard breeding and competition breeding tests. KEY RESULTS: In Pxt1 -/- mice, a strong increase in the sperm DNA fragmentation index (DFI) was observed, while other sperm parameters were comparable to those of control animals. Despite enhanced DFI, mutants were fertile and able to mate in competition with wild type males. CONCLUSIONS: Pxt1 induces cell death; thus, the higher sperm DFI of mice with targeted deletion of Pxt1 suggests some function for this gene in the elimination of male germ cells with chromatin damage. IMPLICATIONS: Ablation of mouse Pxt1 results in enhanced DFI. In humans, the homologous PXT1 gene shares 74% similarity with the mouse gene; thus, it can be considered a candidate for mutation screening in patients with increased DFI.


Assuntos
Infertilidade Masculina , Sêmen , Animais , Humanos , Masculino , Camundongos , Cromatina , DNA , Fragmentação do DNA , Infertilidade Masculina/patologia , Camundongos Knockout , Camundongos Transgênicos , Motilidade dos Espermatozoides/genética , Espermatozoides/patologia
15.
Front Endocrinol (Lausanne) ; 14: 1122004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424858

RESUMO

Introduction: Asthenoteratozoospermia is one of the most common causes of male infertility. Several genes have been identified as genetic causative factors, but there is a considerable genetic heterogeneity underlying asthenoteratozoospermia. In this study, we performed a genetic analysis of two brothers from a consanguineous Uighur family in China to identify gene mutations causative for asthenoteratozoospermia-related male infertility. Methods: Two related patients with asthenoteratozoospermia from a large consanguineous family were sequenced by whole-exome sequencing and Sanger sequencing to identify disease-causing genes. Scanning and transmission electron microscopy analysis revealed ultrastructural abnormalities of spermatozoa. Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence (IF) analysis were used to assess the expression of the mutant messenger RNA (mRNA) and protein. Results: A novel homozygous frameshift mutation (c.2823dupT, p.Val942Cysfs*21) in DNAH6 was identified in both affected individuals and was predicted to be pathogenic. Papanicolaou staining and electron microscopy revealed multiple morphological and ultrastructural abnormalities of affected spermatozoa. qRT-PCR and IF analysis showed abnormal expression of DNAH6 in affected sperm, probably due to premature termination code and decay of abnormal 3' untranslated region (UTR) region of mRNA. Furthermore, intracytoplasmic sperm injection could achieve successful fertilization in infertile men with DNAH6 mutations. Discussion: The novel frameshift mutation identified in DNAH6 may contribute to asthenoteratozoospermia. These findings expand the spectrum of genetic mutations and phenotypes associated with asthenoteratozoospermia and may be useful for genetic and reproductive counseling in male infertility.


Assuntos
Astenozoospermia , Dineínas , Infertilidade Masculina , Humanos , Masculino , Astenozoospermia/genética , Mutação da Fase de Leitura , Infertilidade Masculina/patologia , RNA Mensageiro , Sêmen/metabolismo , Cauda do Espermatozoide/patologia , Dineínas/genética
16.
Theriogenology ; 209: 1-8, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37352789

RESUMO

Ultrasound elastography was proposed for the evaluation of testicular focal lesions, but no studies verified the agreement between the whole histological architecture of the testis and the stiffness measured by elastography. The present study explored the use of strain elastography in the evaluation of testis with normal or abnormal spermatogenesis, classified based on epididymal sperm attributes, and the consistency between elastographic parameters and the testicular histological feature. Strain elastography was performed during the routine andrological examination in 22 dogs presented for elective orchiectomy. Epididymal sperm attributes and testicular histology were analyzed after orchiectomy. Based on the epididymal sperm characteristics, testes were classified according to normal or abnormal spermatogenesis, and strain elastographic attributes were compared between groups. Possible correlations between strain elastography and histological features were also explored. Consistent with the literature in humans, testes with abnormal spermatogenesis were stiffer (mean strain elastographic index 3.6 ± 0.6) compared with normal testes (mean strain elastographic index 1.9 ± 0.2; P < 0.01). The strain elastographic index was negatively correlated with the area occupied by seminiferous tubules (Pearson's rho = -0.716; P = 0.0003), the mean diameter (Pearson's rho = -0.742; P = 0.0002), and thickness of the seminiferous tubule (Pearson's rho = -0.728; P = 0.0002). Surprisingly, no correlations were found between the area occupied by connective tissue in histological sections and elastographic attributes, suggesting that the increased stiffness was not related to the increased amount of connective tissue. This study demonstrated that strain elastography could be used to support the andrological examination, but measurements should be acquired in specific regions to be reliable.


Assuntos
Doenças do Cão , Técnicas de Imagem por Elasticidade , Infertilidade Masculina , Cães , Masculino , Animais , Humanos , Testículo/diagnóstico por imagem , Testículo/patologia , Técnicas de Imagem por Elasticidade/veterinária , Sêmen , Espermatogênese , Túbulos Seminíferos , Infertilidade Masculina/patologia , Infertilidade Masculina/veterinária , Doenças do Cão/patologia
17.
EBioMedicine ; 93: 104675, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37352829

RESUMO

BACKGROUND: Male infertility is a worldwide population health concern, but its aetiology remains largely understood. Although CFAP70 variants have already been reported in two oligo-astheno-teratozoospermia (OAT) individuals by sequencing, animal evidence to support CFAP70 as a credible OAT-pathogenic gene is lacking. METHOD: Cfap70-KO mice were generated to explore the physiological role of CFAP70. CFAP70 variants were detected in infertile men with OAT by whole exome sequencing and Sanger sequencing confirmation. Cfap70-truncated mice were further generated to explore the pathogenicity of the nonsense variant of CFAP70 identified in the proband. FINDINGS: Here, we demonstrate that Cfap70-KO mice are sterile mainly due to OAT and further identify a Chinese infertile man carrying a homozygous nonsense variant (c.2962C > T/p.R988X) of CFAP70. Cfap70-truncated mice lacking 5-8 tetratricopeptide repeats (TPRs) mimic the patient's symptoms. CFAP70 is required for the biogenesis of spermatid flagella partially by regulating the expression of OAT-associated proteins (e.g., QRICH2), assisting the cytoplasmic preassembly of the calmodulin- and radial spoke-associated complex (CSC), and controlling the manchette localization of axoneme-related proteins. Moreover, we suggest that CFAP70-associated male infertility could be overcome by intracytoplasmic sperm injection (ICSI) treatment. INTERPRETATION: Overall, we demonstrate that CFAP70 is necessary to assemble spermatid flagella and that CFAP70 gene could be used as a diagnostic target for male infertility with OAT in the clinic. FUNDING: This study was supported by the National Key Research and Development Project (2019YFA0802101 to S.C), Open Fund of Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education (to S.C), Central Government to Guide Local Scientific and Technological Development (ZY21195023 to B.W), and Basic Research Projects of Central Scientific Research Institutes (to B.W).


Assuntos
Infertilidade Masculina , Sêmen , Humanos , Masculino , Animais , Camundongos , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Infertilidade Masculina/patologia
18.
Adv Sci (Weinh) ; 10(17): e2206852, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37083227

RESUMO

Nonobstructive azoospermia (NOA) is one of the most important causes of male infertility, accounting for 10-15% of infertile men worldwide. Among these, more than 70% of cases are idiopathic NOA (iNOA), whose pathogenesis and molecular basis remain unknown. This work profiles 3696 human testicular single-cell transcriptomes from 17 iNOA patients, which are classified into four classes with different arrest periods and variable cell proportions based on the gene expression patterns and pathological features. Genes related to the cell cycle, energy production, and gamete generation show obvious abnormalities in iNOA germ cells. This work identifies several candidate causal genes for iNOA, including CD164, LELP1, and TEX38, which are significantly downregulated in iNOA germ cells. Notably, CD164 knockdown promotes apoptosis in spermatogonia. Cellular communications between spermatogonial stem cells and Sertoli cells are disturbed in iNOA patients. Moreover, BOD1L2, C1orf194, and KRTCAP2 are found to indicate testicular spermatogenic capacity in a variety of testicular diseases, such as Y-chromosome microdeletions and Klinefelter syndrome. In general, this study analyzes the pathogenesis of iNOA from the perspective of germ cell development, transcription factor (TF) regulatory networks, as well as germ cell and somatic cell interactions, which provides new ideas for clinical diagnosis.


Assuntos
Azoospermia , Infertilidade Masculina , Humanos , Masculino , Azoospermia/genética , Azoospermia/metabolismo , Azoospermia/patologia , Infertilidade Masculina/patologia , Testículo/metabolismo , Testículo/patologia , Células Germinativas
19.
Proteomics ; 23(12): e2300107, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050850

RESUMO

Cattle-yak, the interspecific hybrid between yak and taurine cattle, exhibits male-specific sterility. Massive loss of spermatogenic cells, especially spermatocytes, results in azoospermia in these animals. Currently, the mechanisms underlying meiosis block and defects in spermatocyte development remain elusive. The present study was designed to investigate the differences in the protein composition of spermatocytes isolated from 12-month-old yak and cattle-yak testes. Histological analysis confirmed that spermatocytes were the most advanced germ cells in the testes of yak and cattle-yak at this developmental stage. Comparative proteomic analysis identified a total of 452 differentially abundant proteins (DAPs) in the fluorescence-activated cell sorting (FACS) isolated spermatocytes from cattle-yak and yak. A total of 291 proteins were only present in yak spermatocytes. Gene Ontology analysis revealed that the downregulated DAPs were mostly enriched in the cellular response to DNA damage stimulus and double-strand breaks (DSBs) repair via break-induced replication, while the proteins specific for yak were related to cell division and cycle, spermatogenesis, and negative regulation of the extrinsic apoptotic signaling pathway. Ultimately, these DAPs were related to the critical process for spermatocyte meiotic events, including DSBs, homologous recombination, synapsis, crossover formation, and germ cell apoptosis. The database composed of proteins associated with spermatogenesis, including KPNA2, HTATSF1, TRIP12, STIP1, LZTFL1, LARP7, MTCH2, STK31, ROMO1, CDK5AP2, DNMT1, RBM44, and CHRAC1, is the focus of further research on male hybrid sterility. In total, these results provide insight into the molecular mechanisms underlying failed meiotic processes and male infertility in cattle-yak.


Assuntos
Infertilidade Masculina , Proteômica , Animais , Humanos , Bovinos , Masculino , Testículo/metabolismo , Espermatogênese/genética , Infertilidade Masculina/genética , Infertilidade Masculina/veterinária , Infertilidade Masculina/patologia , Espermatócitos/metabolismo , Proteínas de Ligação a DNA/genética , Nucleoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
20.
Mol Cell Endocrinol ; 568-569: 111916, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37031914

RESUMO

Previous studies have shown that HE4 cancer biomarker promoted cancer cell proliferation and tumor growth in mouse xenograft models. Interestingly, HE4 levels are significantly increased in the seminal plasma of oligoasthenospermia patients, raising a question on HE4 role(s) in spermatogenesis. We constructed an HE4 overexpression mouse model (HE4-OE), and observed that HE4-OE male adult mice had small testes, low sperm counts, and elevated serum/testis testosterone levels. These mice exhibited disorganized seminiferous tubules and impaired spermatogenesis. HE4 overexpression concentrated in Leydig cells, and these cells had hyperplasia and increased testosterone biosynthesis. Mechanistic studies indicated that the impaired spermatogenesis was likely caused by a local and direct action of HE4 in the testis rather than by a hypothalamus/pituitary-initiated dysregulation. The new findings reveal a novel HE4 function in male reproductive system, and suggest the existence of a subtype of primary oligoasthenospermia characterized by HE4 overexpression, Leydig cell hyperplasia, and elevated testosterone levels.


Assuntos
Infertilidade Masculina , Oligospermia , Camundongos , Masculino , Humanos , Animais , Células Intersticiais do Testículo/patologia , Oligospermia/genética , Oligospermia/patologia , Testosterona , Hiperplasia/patologia , Sêmen , Testículo/patologia , Espermatogênese/genética , Infertilidade Masculina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA